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Abstract  In this paper, we address the problem of accounting for informative missing in 
the context of ecological momentary assessment studies (sometimes referred to as inten-
sive longitudinal studies), where each study unit gets measured intensively over time and 
intermittent missing is usually present. We present a shared parameter modeling approach 
that links the primary longitudinal outcome with potentially informative missingness by a 
common set of random effects that summarize a subjects’ specific traits in terms of their 
mean (location) and variability (scale). The primary outcome, conditional on the random 
effects, are allowed to exhibit heterogeneity in terms of both the mean and within subject 
variance. Unlike previous methods which largely rely on numerical integration or approxi-
mation, we estimate the model by a full Bayesian approach using Markov Chain Monte 
Carlo. An adolescent mood study example is illustrated together with a series of simulation 
studies. Results in comparison to more conventional approaches suggest that accounting 
for the common but unobserved random subject mean and variance effects, shared between 
the primary outcome and missingness models, can significantly improve the model fit, and 
also provide the benefit of understanding how missingness can affect the inference for the 
primary outcome.
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1  Introduction

Many scientific investigations generate longitudinal data with missing values, either by 
intermittent missing or in the form of drop out (Laird 1988). In either case, if subjects 
with missing values behave different in terms of the primary outcome compared to those 
without, the conventional statistical methods that assumes missing completely at random 
(MCAR) would yield invalid inference. Furthermore, if missing observations have different 
distributions conditional on the observed data, models assuming missing at random (MAR) 
would also not be valid. Modern data collection procedures, such as ecological momentary 
assessments (EMA), allow researchers to study psychological and behavioral outcomes by 
repeated sampling in real time fashion (Shiffman et al. 2008). Typically these procedures 
involve instant short surveys from individuals over the course of hours, days, and weeks, 
where relatively large numbers of measurements per subject are produced and intermittent 
missingness due to non-responses can be an issue (Sokolovsky et al. 2014). Subjects with 
a substantial proportion of non-responses could be systematically different in terms of the 
outcomes compared to those without. An intuitive suspicion would be that, subjects with 
worse behavioral outcomes or at the occasions when they are experiencing higher levels of 
stress might respond less often. In psychological and behavioral sciences, within subject 
variation is another critical metric in characterizing the primary mental outcomes (Mar-
tin and Hofer 2004). Therefore, within subject variation of the primary outcome can fur-
ther diverge depending on the missingness. For instance, subjects with unstable outcomes 
could respond less often compared to those with relatively consistent outcomes. However, 
research about the informative and intermittent missingness with respect to both the mean 
and within subject variation of the primary outcomes is rather limited.

In general, three modeling frameworks can be used under the scenario of informa-
tive missing. Selection models, first originated in econometrics by Heckman (1979), and 
later formulated in a longitudinal setting by Diggle and Kenward (1994), assume that the 
observed outcomes are subject to selection bias and a drop out model is introduced to cor-
rect for this bias. Pattern mixture models proposed by Little (1993), partition the joint dis-
tribution of the primary outcome and missing process into distinct missing patterns, and 
compute the joint likelihood conditional on each pattern. Shared parameter models assume 
that there is a set of latent variables U shared between the primary outcome and missing 
process, which are conditionally independent given U (Vonesh et al. 2006). Unlike time to 
event studies where there are relatively small numbers of missing patterns, in EMA studies 
intermittent missingness is common and the number of missing patterns could be intrinsi-
cally large, making it hard to employ pattern mixture models. We thus resort to shared 
parameter models, which turn out to make more intuitive sense. Consider the scenario 
where the primary outcome of interest is mood assessments and data can be intermittently 
missing due to non-responses. The shared parameter model would assume that some com-
mon but unobserved information is shared between subject’s mood and the probability of 
missing, and conditional on the latent information, mood can be modeled independently of 
the missing process. Recent work has shown that sharing subject’s specific location traits 
between the primary mood outcome and the missing process can significantly improve the 
model fit (Cursio et al. 2018). Our model extends this work by additionally allowing covar-
iates to influence the within subject variance, by including random subject scale (variance) 
effects, by allowing the random location and scale effects to influence missingness, and by 
adopting a Bayesian model estimation framework instead of maximum likelihood methods. 
In particular, no work has been done to explore the possible effect of a subject’s scale on 
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the missing process. Furthermore, we investigate the use of the model to impute the miss-
ing responses.

Shared parameter models can be difficult to implement due to marginalization of the 
random effects. Wu and Carroll (1988) utilized a maximum likelihood estimation method 
by numerical integration. Follmann and Wu (1995) approximated the generalized linear 
model by conditioning on the data that describes missingness. Pulkstenis et  al. (1998) 
derived a closed form expression of the marginal likelihood by specifying conjugate ran-
dom effects for both the outcome and missing process. Unlike these methods that are 
either sensitive to starting values or restrictive in terms of the random effects distributional 
assumptions, we propose to estimate the model by a full Bayesian approach without undue 
restrictions on the distribution of the primary outcome, missing process, or random effects.

In this paper, we develop a comprehensive Bayesian approach to shared parameter mod-
els, where the primary outcome and missing process can be related in terms of both the 
subject’s location and scale random effects. The expansion of sharing to include additional 
scale information makes practical sense in the context of EMA and psychological stud-
ies (Nesselroade 2004). The primary outcomes are allowed to follow a variety of distri-
butions with heterogeneous error variance, where the heterogeneity is characterized by a 
location and scale random effect, respectively (Hedeker et al. 2008). The intermittent miss-
ing process is modelled by a logistic regression model including a random subject effect. 
The missingness random effect is then linked with the outcome location and scale random 
effects to allow for informative missingness. With the full Bayesian approach, posterior 
distributions of the model parameters as well as random effects are obtained by MCMC 
(Bradley and Siddhartha 1995).

2 � Motivating example

This research is motivated by an EMA study investigating the effects of psychosocial fac-
tors on mood regulation among adolescents. The entire EMA study was conducted across 6 
waves: baseline, 6, 15 months, 2, 5 and 6 years. For illustration purposes, we will focus on 
data from the baseline wave.

At baseline, 461 adolescents (average age 15.6, minimum 14.4, maximum 16.7) from 
9th and 10th grade were asked to carry electronic devices and answer questions when ran-
domly prompted during a 7 day study period. Each individual was prompted multiple times 
within a single day. Questions included location, activities, companionship, mood and 
other psychological assessments. The primary outcomes of interest are positive affect (PA) 
as well as negative affect (NA), which consist of the average of several mood items rated 
from 1 to 10 that measures subject’s positive/negative mood. For PA, questions include: I 
felt happy, I felt relaxed, I felt cheerful, I felt confident, and I felt accepted by others; for 
NA, questions include: I felt sad, I felt stressed, I felt angry, I felt frustrated, and I felt irri-
table. Higher PA levels indicates better mood while higher NA indicates worse mood. Each 
response will be time stamped regardless of missing status. For the analyses presented 
here, we will consider subject-level covariates of age, gender, smoking status, negative 
mood regulation, and the occasion-varying indicator of whether they were alone or with 
others at the time of the prompt.

Intermittent missingness was generated when an individual did not respond to the 
prompts. Dropout is not as big a concern here as more than 96.5% individuals were still 
available at the end of the 7 day study period. On average, 22.3% prompts were missing 
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for each individual, with the highest missing proportion per individual being 89.7%. There 
were a fair number of prompts missing on each study day: 22.6% on day 1, 19.0% on day 2, 
20.9% on day 3, 24.6% on day 4, 25.6% on day 5, 25.0% on day 6 and 23.9% on day 7. The 
proportions of missing prompts were relatively similar during weekdays. In terms of time 
of day, most missingness occurred between 3 and 9 a.m. (27.2%) and least from 6 to 9 p.m. 
(20.8%), but the pattern on weekend days was different in that missingness occurred mostly 
between 9 p.m. and 3 a.m. (52.9% on Saturday and 73.1% on Sunday).

In what follows, we propose a shared parameter model that links the primary outcome 
with the missing process through a set of random subject effects. For simplicity, we will 
illustrate the model framework using a normally distributed outcome and binary missing 
indicator in the context of the example EMA study. However, it can also be extended to 
other outcome types (e.g., binary or Poisson). We then illustrate a full Bayesian approach 
for model estimation using MCMC. A series of simulation studies are presented to validate 
the model estimation procedure, and to examine the use of the model for imputation of 
missing observations. Finally, the proposed model is applied to the adolescent mood EMA 
study and results are compared to naive analyses where only the observed data are used.

3 � Shared parameter model

We present the methodology along the lines of Follmann and Wu (1995), but for a nor-
mally distributed and intensively measured longitudinal outcome and binary intermittent 
missing indicator, which often arise in the context of EMA studies. The approach is to 
specify the outcome and missing models that share the same set of random effects for each 
individual.

3.1 � Model for intensively measured longitudinal outcomes

Let Yij be the outcome for individual i at occasion j, where i = 1,… , n , and j = 1,… , ni 
(we allow different individuals to have different number of measurements by subscript n 
with i). Examples might include mood assessments (PA/NA), craving for food, depression 
scores, or other psychological measurements. Since Y is measured intensively over time, 
most of the ni would be large (usually 20–40) compared to traditional longitudinal studies. 
We specify a mixed effect location scale model for Yij as described in Hedeker et al. (2008):

where Xij and Zij are the fixed effect covariate vectors in the mean and within subject vari-
ance model. Both can include subject and occasion level covariates, and usually Zij contain 
a subset of variables in Xij ; � and � are the corresponding fixed effect coefficient vectors 
( � in log scale), which indicate the population average effect of the covariates on the mean 
and (log of) the within subject variability of the outcome. Similarly, Pij and Qij are the 
random effect covariate vectors in the mean and variance model, with �1,i and �2,i being the 
corresponding random subject location and scale effects, indicating the effect of subject i 
on his/her mean and within subject variability of the repeated measurements. Usually P 
and Q are subsets of X and Z. In the case of a random intercept location scale model, P and 
Q both consist of a column of 1’s. The reason to include both location and scale random 
effects is to allow for subject heterogeneity in both the mean and within subject variability 

(1)Yij ∣
{

𝜈1,i, 𝜈2,i
}

∼ (

X⊤
ij
𝛽 + P⊤

ij
𝜈1,i; exp(Z

⊤
ij
𝛼 + Q⊤

ij
𝜈2,i)

)
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of the outcome that cannot be fully explained by covariates. This relaxes the homogeneous 
error variance assumption adopted by most statistical methods.

In the context of the EMA adolescent study example, we will model the mood outcomes 
(PA and NA) as:

where smoke ( 0 = non-smoker , 1 = smoker ), gender ( 0 = Female , 1 = Male ), NMR (nega-
tive mood regulation) and GPA are all subject level covariates. The occasion level covariate 
Alone is further decomposed into AloneBS and AloneWS, which are the between-subject 
and within-subject component of Alone, respectively. The reason for the decomposition 
is to investigate how the effect of being alone on mood differs when comparing the same 
subject at different occasions (AloneWS) to different subjects averaged over all occasions 
(AloneBS). This might help to indicate the appropriate level for clinical interventions to be 
performed at Piasecki et al. (2014). �1,i is the random subject location intercept and reflects 
the influence of subject i on his/her mood assessments. �ij is the random error and reflects 
the uncertainty in measuring subject i’s mood at occasion j relative to the subject average. 
The variance of �ij reflects the mood consistency measured for subject i, thus the smaller 
the variance is, the more stable subject i behaves in terms of his/her mood. To account for 
the fact that individuals usually exhibit distinct patterns for mood consistency, we addition-
ally model the error variance by

where �2,i is the random subject scale intercept and reflects the influence of subject i on the 
variability of his/her repeated mood assessments. The log function ensures that the error 
variance is strictly positive. Here we have the same set of covariates in the mean and vari-
ance model since the interest is to understand how these covariates affect mood levels as 
well as the within subject mood variability. The random effects 

{

�1,i, �2,i
}

 are assumed to 
follow a bivariate normal distribution with mean 0 and some covariance structure. Condi-
tional on 

{

�1,i, �2,i
}

 , the mood measurements yij are i.i.d.

3.2 � Model for the missing process

We propose a random intercept logistic regression model for the binary missing prompt indi-
cators. Let Mij be the missing indicator for subject i at occasion j, where Mij is 0 if the subject 
responds to the prompt and 1 if missing. Since all responses are time stamped, we can inves-
tigate whether time of day influences these prompt indicators. Here we assume a typical day 
starts at 3 a.m. in the morning and divide each day into five time bins: 3–9 a.m., 9 a.m.–3 p.m., 
3–6 p.m., 6–9 p.m. and 9 p.m.–3 a.m., and use these time bins as covariates in our modeling 
of the missing process. Empirical analyses indicate that students tend to behave similar during 
the weekdays, but quite differently on Saturday and Sunday. Thus, to simplify and facilitate 
model estimation, we combine each of the five time bins from Monday to Friday, resulting in 
a total of 15 bins: 5 during weekdays, 5 on Saturday and another 5 on Sunday. The proposed 
random intercept logistic regression model is given by

(2)
Yij = �0 + �1smokei + �2genderi + �3NMRi + �4GPAi + �5AloneWSij + �6AloneBSi + �1,i + �ij

(3)
log(�2

�ij
) = �0 + �1smokei + �2genderi + �3NMRi + �4GPAi + �5AloneWSij + �6AloneBSi + �2,i

(4)log

(

Pr(Mij = 1)

1 − Pr(Mij = 1)

)

= �0 +

k=15
∑

k=2

�k ⋅ T
k
ij
+ �i
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where k = 2,… , 15 is the time bin index and Tk
ij
 is the indicator of the k th time bin for the 

prompt individual i received at occasion j. For the purpose of model identifiability, the first 
bin T1

ij
 is treated as the reference time bin; �0 is the fixed intercept, indicating the log odds 

of missing a response for an individual with �i = 0 during 3–9 p.m. on a weekday when he/
she received a prompt. �i is subject i’s random intercept, indicating the influence of subject 
i on his/her log odds of missing prompts. Similar to the model in Sect.  3.1, conditional on 
�i , the missing indicators Mij are assumed to be i.i.d following a Bernoulli distribution with 
missing probability pij = 

exp(�0+
∑k=15

k=2
�k ⋅T

k
ij
+�i)

1+exp(�0+
∑k=15

k=2
�k ⋅T

k
ij
+�i)

 . Here pij is modelled by both observed and 

latent information, with time bins being explicitly measured and the random effect �i 
accounting for all unobserved information at the subject level.

3.3 � Parameter sharing and joint model

Up to this point, the outcome and missing process are still separate. It is possible that there 
exists some common but unobserved information that contributes to both the outcome and 
missing process. A legitimate example in the above adolescent mood study would be that, an 
individual’s work schedule cannot be measured but is related to both the mood assessments 
and missing propensity. For example, individuals with tight schedules might have worse and 
unstable mood, and they might also be less likely to respond to the prompts. In this case, the 
unmeasurable work schedule might be represented using the random subject effect �i extracted 
from the missing model. This leads to the parameter sharing below:

where 
{

�1,i, �2,i
}

 and �i are random subject effects in the outcome and missing model, and 
can both be regarded as traits specific to individual i. A set of linear models are used to link 
{

�1,i, �2,i
}

 with �i . In Eq.  5, individuals i’s location random intercept �1,i can be represented 
by his/her personal missing trait �i and an error term �1,i that absorbs the residual varia-
tion orthogonal to �i . The shared parameter coefficient � indicates the effect of missingness 
on the subject’s mean outcome. Similarly in Eq. 6, � represents the effect of missingness 
on the within subject variability of the outcome. By specifying Eqs. 5 and 6, the primary 
longitudinal outcome is linked with the missing process through the random subject effects 
and informative missing can be taken into account. Thus, we call � the shared random sub-
ject effect between the outcome and missingness, and �1 and �2 as the residual random sub-
ject location and scale effects.

By substituting Eqs. 5 and 6 into Eqs. 2 and 3, we can re-express the shared parameter out-
come model for this example below as:

(5)�1,i = � ⋅ �i + �1,i

(6)�2,i = � ⋅ �i + �2,i

(7)Yij = �0 +

6
∑

k=1

�k ⋅ x
k
ij
+ � ⋅ �i + �1,i + �ij

(8)log(�2
�ij
) = �0 +

6
∑

k=1

�k ⋅ x
k
ij
+ � ⋅ �i + �2,i.
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4 � Model estimation

4.1 � Maximum likelihood estimation method

The shared parameter location scale model assumes that conditional on the set of ran-
dom subject effects 

{

�i, �1,i, �2,i
}

 , the primary outcome Yij and missing indicator Mij 
are independent. Thus, we can explicitly write out the conditional joint likelihood of 
(Y ,M ∣ �, �1, �2

)

 as

where fN and fB denote the probability density (mass) function of a Normal and Bernoulli ran-
dom variable. Specifically, yij ∣ 𝜆i, 𝜂1,i, 𝜂2,i ∼ (

x⊤
ij
𝛽 + 𝛾 ⋅ 𝜆i + 𝜂1,i, exp(x

⊤
ij
𝛼 + 𝛿 ⋅ 𝜆i + 𝜂2,i)

)

 , 

and mij ∣ 𝜆i ∼ 
(

p =
exp(t⊤

ij
𝜏+𝜆i)

1+exp(t⊤
ij
𝜏+𝜆i)

)

 . The marginal joint likelihood (Y ,M) is then obtained 

by integrating the conditional joint likelihood (Y ,M ∣ �, �1, �2
)

 over the joint distribution 
of the random effect vector 

{

�, �1, �2
}

.

where Eq. 10 can be further simplified by model assumptions. As mentioned in Sect. 3.3, 
�i is independent of 

{

�1,i, �2,i
}

 , while �1,i and �2,i are allowed to be correlated. Therefore, 
d(

�i, �1,i, �2,i
)

 can be factored into dN(�i)dN(�1,i, �2,i) . Once the marginal joint likeli-
hood is computed, optimization can proceed by obtaining the first and second partial deriv-
atives of the (log) marginal likelihood with respect to all model parameters. However, this 
procedure involves multi-dimensional numerical integration over the random effect distri-
bution and can be computationally challenging. Also, computing the inverse of the Hessian 
Matrix can be difficult due to the large number of parameters in the joint model (35 in the 
above adolescent mood study example).

4.2 � Full Bayesian estimation approach

Due to the difficulties in evaluating the marginal joint likelihood as described in Sect. 4.1, 
we switch to a full Bayesian estimation approach, where parameters and random effects 
are regarded as random quantities while data are regarded as fixed. To simplify notation, 
denote � = (�, �, �, � , �) as the model parameter vector, � =

{

�i
}n

i=1
 as the random subject 

effects for the missing process, � =
{

�1,i, �2,i
}n

i=1
 as the random subject effect vector in the 

outcome model and D =
{

Yi,Mi

}n

i=1
 as the data.

Since � , � and � are all random, they each follow some prior distribution before we 
get to observe the data D, and we denote the priors as �(�) , �(�) , and �(�) respectively. 
Since individuals are assumed to be independent, �(�) can be written as 

∏n

i=1
�(�i) , and 

similarly for �(�) . Natural choices for �(�i) and �(�i) are a univariate standard normal and 
bivariate standard normal, respectively. For �(�) , one can specify a separate prior for each 

(9)(Y ,M ∣ �, �1, �2
)

=

n
∏

i=1

ni
∏

j=1

fN(yij ∣ xij, �i, �1,i, �2,i) ⋅ fB(mij ∣ tij, �i)

(10)(Y ,M) = �
n

∏

i=1

{

ni
∏

j=1

fN(yij ∣ xij, �i, �1,i, �2,i) ⋅ fB(mij ∣ tij, �i)

}

d(

�i, �1,i, �2,i
)
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component in � provided that a full conditional posterior is obtained for each of them. 
Given independent priors, one can derive the conditional posterior as

P(Di ∣ �, �i, �i) is the conditional joint likelihood given in Eq. 9, and � is the corresponding 
prior. Once the full conditional posteriors are obtained for � , � and � , we can approximate 
their joint posterior by sampling each variable from its full conditional posterior iteratively 
using Gibbs sampling (Casella and George 1992). In the case where the conditional pos-
terior is not of a recognized form, one can use the Metropolis–Hastings algorithm, which 
keeps drawing samples from a proposal distribution and decides whether or not to accept 
the sample as from the conditional posterior with some acceptance rate (Chib and Green-
berg 1995). We devised a MCMC sampling algorithm where component-wise Metropo-
lis–Hastings algorithms are nested within Gibbs sampling. However, a better approach can 
be taken using Stan, an open source Hamiltonian Monte Carlo sampler, since it can better 
deal with the trade off between step size and acceptance rate by reducing the correlation 
between successive samples using a Hamiltonian evolution and target values with a higher 
acceptance rate than the observed probability distribution (Stan-Development-Team 2014). 
Both the MCMC derivation and Stan implementation details are provided in the Supple-
mental Materials. The Hamiltonian Monte Carlo sampling uses improper uniform priors 
[uniform on ( −∞,+∞ )] for regression coefficients, improper bounded uniform priors 
[uniform on ( 0,+∞ )] for random effect variances, and an LKJ prior for the random effect 
correlation matrix.

5 � Simulation results

To validate the proposed model and estimation procedure, we conducted a series of simula-
tion studies and present the results here. Because of the heavy computation load, we lim-
ited the number of simulations to 100 under each scenario. Generally, results became quite 
consistent after the first 25 simulations and remained consistent till the end.

For each simulation, an intensively measured longitudinal outcome Y was generated via 
a location scale process for 100 individuals at a total of 30 occasions. Covariates included 
gender (subject level) and time stamps (occasional level). Once the complete data were 
generated, observations were set to intermittent missing via a Bernoulli process, where 
the missing probability was simulated under two scenarios: (1) missing does not depend 
on potential outcomes (MCAR or MAR), and (2) missing depends on potential outcomes 
(MNAR). For each scenario, analyses were conducted using two candidate methods: (a) 
a naive model which assumes MAR and utilizes only the observed outcome, and (b) the 
proposed model that shares random subject location and scale effects between the outcome 
and missing process. The detailed model specifications are shown in Eqs. 14 and 15 for the 
naive model and Eqs. 16–18 for the proposed model, where Yij denotes the outcome and Mij 
denotes the missing indicator.

Naive model: 

(11)P(� ∣ �i, �i,Di) ∝ P(Di ∣ �, �i, �i)�(�)

(12)P(�i ∣ �, �i,Di) ∝ P(Di ∣ �, �i, �i)�(�i)

(13)P(�i ∣ �, �i,Di) ∝ P(Di ∣ �, �i, �i)�(�i)

(14)Yij = � int + �gender ⋅ genderi + � time ⋅ timeij + �1,i + �ij
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Proposed model: 

Results are summarized in Table 1. � are the regression coefficients for the outcome mean 
model, and � are for the within subject variance model (on log scale). �2

�1
 and �2

�2
 are the 

variances for the random subject location and scale effects. � and � are the coefficients for 
the shared parameters, indicating the influence of missingness on the mean and within sub-
ject variance, as described in Sect. 3.3. The point estimates are obtained as the posterior 
mean for regression coefficients � , � , � and � since their posteriors are approximately 

(15)log(�2
�ij
) = �int + �gender

⋅ genderi

(16)log

(

Pr(Mij = 1)

1 − Pr(Mij = 1)

)

= � int + �gender ⋅ genderi + � time ⋅ timeij + �i

(17)Yij = � int + �gender ⋅ genderi + � time ⋅ timeij + � ⋅ �i + �1,i + �ij

(18)log(�2
�ij
) = �int + �gender

⋅ genderi + � ⋅ �i + �2,i

Table 1   Simulation results under two scenarios: MCAR/MAR and MNAR

Parameter True value Naive model Shared parameter model

Bias AIW COV (%) Bias AIW COV (%)

Scenario MCAR/MAR
 � int 0.30 − 2.2 × 10−2 0.836 98 − 2.3 × 10−2 0.842 95
 �gender 0.20 8.5 × 10−4 1.162 97 1.6 × 10−3 1.171 96
 � time 0.01 − 7.1 × 10−5 0.012 92 − 9.2 × 10−5 0.012 92
 �int 0.30 − 4.7 × 10−3 0.181 94 − 7.2 × 10−3 0.192 97
 �gender 0.10 1.5 × 10−3 0.253 96 2.2 × 10−3 0.265 96
 �2

�1
2.00 1.26 × 10−1 1.266 94 1.46 × 10−1 1.276 93

 �2
�2

0 – – – 7.7 × 10−3 0.032 –
 � 0 – – – 8.9 × 10−4 0.468 97
 � 0 – – – 1.34 × 10−2 1.886 96

Scenario MNAR
 � int 0.30 4.6 × 10−2 0.863 96 − 8.1 × 10−3 0.858 97
 �gender 0.20 3.0 × 10−2 1.185 95 2.9 × 10−2 1.195 93
 � time 0.01 5.0 × 10−4 0.014 96 3.1 × 10−4 0.009 95
 �int 0.30 1.76 × 10−1 0.185 29 1.2 × 10−3 0.622 95
 �gender 0.10 2.9 × 10−2 0.260 43 8.3 × 10−3 0.880 95
 �2

�1
2.00 1.34 × 10−1 1.326 93 1.27 × 10−1 1.378 99

 �2
�2

1.00 – – – 8.1 × 10−2 0.739 95
 � − 1.00 – – – − 5.8 × 10−2 0.656 97
 � 1.00 – – – 5.6 × 10−2 0.671 93
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symmetric, and as mode for random effect variances �2
�1

 and �2
�2

 since their posteriors are 
relatively skewed. Bias is computed for each parameter as the average point deviation from 
the true value: Bias =

∑100

k=1
(𝜃̂k − 𝜃)∕100 , where 𝜃̂k denotes the posterior mean for 

(�, �, � , �) and mode for 
(

�2
�1
, �2

�2

)

 from the kth simulation. AIW (average interval width) is 

computed as the average range between the 97.5 and 2.5% quantile of the posterior: 
AIW =

∑100

k=1
(�U

k
− �L

k
)∕100 , where �U

k
 and �L

k
 are the 97.5 and 2.5% quantile of the poste-

rior distribution from the k th simulation. For each parameter, we also calculate the number 
of times out of 100 that the 95% credible interval contains its true value, thus providing the 
coverage rate as COV =

∑100

k=1
𝟙
�

�L
k
⩽ � ⩽ �U

k

�

∕100.
Under MAR, the naive model and proposed model are expected to perform similar as 

the missing process is independent of the potential outcome. This is also confirmed in 
Table  1 from the small bias, reasonable AIW and correct COV for both models. Under 
MNAR, however, the two models diverge in terms of the inference for � . The shared 
parameter model has both smaller bias and much better coverage rate for �intcp and �gender 
compared to the naive model. Furthermore, the small bias and correct coverage of �2

�2
 , � 

and � also provide evidence of the validity of the proposed model. This clearly shows that 
the naive analyses, which ignore the association between the primary outcome and the 
missing process, can lead to invalid inference, particularly for the variance model parame-
ters. The mean model parameters and random location effect variance seem less likely to 
be affected as all bias is absorbed into the error variance components. Overall, the pro-
posed shared parameter model achieves good estimation precision, correct interval length 
and asymptotic coverage rate, yet provides insightful information about the missing 
mechanisms.

In addition, we imputed the missing values under the two scenarios by both candi-
date models and compared the imputated values with the true (missing) outcomes. Under 
MAR, both the naive and shared parameter models achieve small imputation bias (0.0005 
vs. 0.0007) and correct coverage rate (94.8 vs. 94.9%). Under MNAR, however, the naive 
model produces greater imputation bias (0.162 vs. 0.005) and an inadequate coverage rate 
(86.5 vs. 94.9%) as compared to the shared parameter model.

6 � Application to adolescent mood study example

In this section, we revisit the example introduced in Sect. 2. An important aim of the study 
is to identify factors that can potentially influence the mean and within subject variance 
of individuals’ positive/negative mood. Informative missing is likely to occur since mood 
can only be assessed if individuals respond to the prompt, and whether or not they decide 
to respond may be affected by their mood at the time of the prompt. For every prompt 
individual i received, we record the missing indicator vector Mi (1 if missing, 0 if respond), 
mood assessment vector Yi (PA or NA) if not missing and the time window Ti ( Tk

ij
= 1 if the 

prompt occurred in the k th window for k = 1,… , 15).
Three candidate models are applied to the example EMA data: (1) a random inter-

cept model with heterogeneous variance (HV) that provides covariance adjustment for 
the correlation among repeated measurements and allows covariates to affect the within 
subject variance, (2) the shared location model that not only provides inference for the 
outcome mean and within subject variance, but also allows missingness and the outcome 
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mean to be correlated through shared random subject effect, and (3) the proposed shared 
location scale model that associates each individual’s missingness with both the mean 
and within subject variance of the primary outcome. The detailed model specifica-
tions are shown below, where Xij = (1, smki, genderi,NMRi,GPAi,AloneBSi,AloneWSij) 
is the covariate vector for the mean and within subject variance model, 
� = (� int, �smk, �gender, �NMR, �GPA, �AloneBS, �AloneWS) is the regression coefficient vec-
tor for the mean model, and � = (�int, �smk, �gender, �NMR, �GPA, �AloneBS, �AloneWS) is the 
regression coefficient vector for the within subject variance model.

Random intercept HV model: 

Shared location model: 

Shared location scale model: 

To better compare the parameter estimates and credible intervals, we performed the 
Bayesian approach in Sect. 4.2 for all three candidate models. Results are summarized 
in Table 2 for positive affect and Table 3 for negative affect. Again, the point estimates 
are obtained as the posterior mean for regression coefficients � , � , � and � , and as mode 
for random effect variances �2

�1
 and �2

�2
 . The 95% credible intervals (CI) are obtained as 

the 2.5 and 97.5% posterior quantiles for all parameters. The model selection criteria 
elpdLOO , proposed by Vehtari et al. (2017), estimates the pointwise leave one out (LOO) 
prediction accuracy from a fitted Bayesian model by evaluating the log likelihood over 
the posterior samples. It is preferred over the deviance information criterion (DIC) since 

(19)Yij = X⊤
ij
𝛽 + 𝜈1,i + 𝜖ij

(20)log
(

𝜎2
𝜖ij

)

= X⊤
ij
𝛼 + 𝜈2,i

(21)log

(

Pr(Mij = 1)

1 − Pr(Mij = 1)

)

= �0 +

k=15
∑

k=2

�k ⋅ T
k
ij
+ �i

(22)Yij = X⊤
ij
𝛽 + 𝛾 ⋅ 𝜆i + 𝜂1,i + 𝜖ij

(23)log(𝜎2
𝜖ij
) = X⊤

ij
𝛼 + 𝜈2,i

(24)log

(

Pr(Mij = 1)

1 − Pr(Mij = 1)

)

= �0 +

k=15
∑

k=2

�k ⋅ T
k
ij
+ �i

(25)Yij = X⊤
ij
𝛽 + 𝛾 ⋅ 𝜆i + 𝜂1,i + 𝜖ij

(26)log(𝜎2
𝜖ij
) = X⊤

ij
𝛼 + 𝛿 ⋅ 𝜆i + 𝜂2,i
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it accounts for the entire posterior distribution, works for singular models and is invari-
ant to parametrization. Higher elpdLOO indicates better model fit adjusting for the model 
complexity.

For covariate effects on the mean of the mood outcome, the shared location model and 
shared location scale model give relatively similar estimates that are different from the 
random intercept HV model, except for AloneWS. Specifically for positive affect, higher 
negative mood regulation is significantly associated with higher PA, while higher GPA and 
being alone (both at subject and occasion levels) are associated with lower PA. Although 
not statistically significant, the trend indicates that smokers tend to have lower PA com-
pared to non-smokers and males tend to have better PA than females, adjusting for all other 
covariates. For all three candidate models, the magnitude of the effect of AloneBS on PA 
is estimated to be three times as big as AloneWS, suggesting that the between- and within-
subject effects are not equal, though of the same sign. Subjects who are alone more often 
report lower average PA (between-subject effect), and when subjects are alone they also 
report lower PA (within-subject effect). For negative affect, in Table 3, the mean effect esti-
mates are of opposite sign and lead to similar conclusions, as higher NA indicates worse 
mood.

For covariate effects on the within subject variance, PA and NA models provide rela-
tively similar coefficient estimates since both the within subject variance of PA and NA 

Table 2   Comparison of parameter estimates and credible intervals between the random intercept model 
with heterogeneous variance, and shared parameter location model, and shared parameter location scale 
model: positive affect

Parameter Random intercept HV model Shared location model Shared location scale model

Estimate CI Estimate CI Estimate CI

� int 6.084 (5.463, 6.742) 6.152 (5.532, 6.826) 6.115 (5.422, 6.789)

�smk − 0.135 (− 0.330, 0.071) − 0.143 (− 0.358, 0.055) − 0.146 (− 0.363, 0.076)
�gender 0.204 (− 0.011, 0.440) 0.210 (− 1.528, 0.412) 0.212 (− 0.019, 0.428)
�NMR 0.640 (0.491, 0.803) 0.647 (0.466, 0.811) 0.658 (0.500, 0.821)
�GPA − 0.148 (− 0.302, − 0.011) − 0.170 (− 0.315, − 0.022) − 0.172 (− 0.319, − 0.020)
�AloneBS − 1.070 (− 1.597, − 0.536) − 1.059 (− 1.64, − 0.450) − 0.999 (− 1.529, − 0.450)
�AloneWS − 0.328 (− 0.387, − 0.270) − 0.329 (− 0.391, − 0.268) − 0.256 (− 0.307, − 0.205)
�int 1.518 (1.367, 1.670) 1.512 (1.371, 1.661) 1.286 (0.868, 1.713)
�smk 0.006 (− 0.043, 0.054) 0.006 (− 0.043, 0.059) 0.033 (− 0.109, 0.170)
�gender − 0.220 (− 0.274, − 0.166) − 0.220 (− 0.271, − 0.167) − 0.270 (− 0.421, − 0.114)
�NMR − 0.176 (− 0.214, − 0.136) − 0.175 (− 0.211, − 0.140) − 0.160 (− 0.263, − 0.050)
�GPA − 0.082 (− 0.114, − 0.049) − 0.081 (− 0.114, − 0.048) − 0.080 (− 0.179, 0.027)
�AloneBS 0.321 (0.189, 0.451) 0.320 (0.191, 0.447) 0.330 (− 0.021, 0.676)
�AloneWS 0.049 (− 0.010, 0.105) 0.051 (− 0.007, 0.109) 0.107 (0.047, 0.168)
�2
�1

1.025 (0.998, 1.333) 1.093 (1.013, 1.317) 1.215 (1.013, 1.326)

�2
�2

– – – – 0.530 (0.415, 0.572)
��1,�2 – – – – − 0.294 (− 0.358, − 0.275)
� – – − 0.109 (− 0.242, 0.006) − 0.134 (− 0.254, − 0.006)
� – – – – 0.061 (− 0.0030, 0.150)
elpdLOO − 23,866 – − 23,863 – − 22,815 –
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reflect individuals’ mood consistency/inconsistency. The random intercept HV model and 
shared location model give similar effect estimates as well as narrower credible intervals 
that are different from the proposed shared location scale model. This is as expected since 
neither of the two former models include scale random effects for the within subject vari-
ance and there is no parameter sharing between the outcome variation and the missing 
process. Therefore we will refer to the proposed shared location scale model for coefficient 
interpretation. Specifically for positive affect, higher negative mood regulation is signifi-
cantly associated with more stable mood, which is in agreement with the theory that higher 
negative mood regulation indicates better mood control. Males tend to have more stable PA 
compared to females, and subjects with lower GPA tend to have more stable PA. Although 
not statistically significant, the trend indicates that smokers tend to have more erratic PA 
compared to non-smokers adjusting for all other covariates. The three candidate models 
disagree on the effect of Alone, where the random intercept HV model and shared loca-
tion model indicate that the between subject component AloneBS contributes significantly, 
while the shared location scale model indicates increased variation for the within subject 
component AloneWS. Thus, comparing responses from the same subject at different occa-
sions, the subject’s PA is more variable when he/she is alone compared to when he/she is 
with others.

Table 3   Comparison of parameter estimates and credible intervals between the random intercept model 
with heterogeneous variance, and shared parameter location model, and shared parameter location scale 
model: negative affect

Parameter Random intercept HV model Shared location model Shared location scale model

Estimate CI Estimate CI Estimate CI

� int 4.550 (3.756, 5.293) 4.591 (3.818, 5.349) 4.516 (3.773, 5.307)

�smk 0.374 (0.086, 0.639) 0.366 (0.082, 0.626) 0.359 (0.100, 0.616)
�gender − 0.354 (− 0.612, − 0.092) − 0.377 (− 0.652, − 0.105) − 0.384 (− 0.640, − 0.123)
�NMR − 0.825 (− 1.020, − 0.628) − 0.863 (− 1.036, − 0.685) − 0.853 (− 1.052, − 0.663)
�GPA 0.241 (0.071, 0.415) 0.262 (0.087, 0.424) 0.275 (0.101, 0.440)
�AloneBS 0.172 (− 0.516, 0.901) 0.175 (− 0.509, 0.850) 0.106 (− 0.569, 0.770)
�AloneWS 0.199 (0.132, 0.268) 0.201 (0.136, 0.263) 0.090 (0.045, 0.135)
�int 1.803 (1.654, 1.945) 1.803 (1.663, 1.955) 1.689 (1.105, 2.215)
�smk 0.132 (0.082, 0.184) 0.132 (0.078, 0.185) 0.204 (0.020, 0.374)
�gender − 0.236 (− 0.286, − 0.185) − 0.236 (− 0.289, − 0.185) − 0.370 (− 0.570, − 0.169)
�NMR − 0.183 (− 0.221, − 0.146) − 0.182 (− 0.221, − 0.144) − 0.299 (− 0.436, − 0.150)
�GPA − 0.078 (− 0.111, − 0.045) − 0.078 (− 0.111, − 0.045) − 0.047 (− 0.160, 0.069)
�AloneBS − 0.030 (− 0.164, 0.103) − 0.030 (− 0.170, 0.113) 0.062 (− 0.446, 0.546)
�AloneWS − 0.001 (− 0.061, 0.057) − 0.001 (− 0.060, 0.056) 0.023 (− 0.041, 0.088)
�2
�1

1.625 (1.544, 2.069) 1.643 (1.551, 2.061) 1.714 (1.527, 2.033)

�2
�2

– – – – 0.758 (0.745, 1.015)
��1,�2 – – – – 0.413 (0.375, 0.443)
� – – 0.176 (0.017, 0.343) 0.175 (0.017, 0.338)
� – – – – 0.086 (− 0.031, 0.207)
elpdLOO − 25,339 – − 25,339 – − 23,840 –
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As an extra benefit from the shared parameter model, there seems to be a negative asso-
ciation between the missingness and PA mean (positive for NA), as indicated by the esti-
mate of � . This is in agreement with our hypothesis that a lower response rate is related 
to worse mood. Although not significant at the 5% level, the positive estimate of � on PA 
and NA indicates that a lower response rate is also associated with unstable mood. For PA, 
there is a negative association between the random location and scale random effect pos-
sibly due to a ceiling effect (i.e., subjects with high PA means tend to have lower scale due 
to the ceiling of measurement). This association is positive for NA indicating that subjects 
with lower means have lower variability, possibly due to a floor effect of measurement. The 
shared location scale model achieves great improvement in terms of the model fit over the 
other two models adjusting for complexity, as is shown by elpdLOO , and is thus preferred.

Table 4 summarizes the estimated effects in the missingness model for all 15 time win-
dows (5 time bins for weekdays as well as for Saturday and Sunday) for both PA and NA. 
Generally, one would expect to obtain very similar estimates for both PA and NA since, 
when prompted, students are most likely to answer them both or neither. During weekdays, 
the most prompts were answered late in the day (from 6 to 9 p.m.) and students become 
least attentive early in the day (from 3 to 9 a.m.). For the weekend days, students answer 
most prompts from 9 a.m.to 3 p.m. on Saturday and from 6 to 9 p.m. on Sunday. Students 
generally behave less responsive on Saturday, and a bit more responsive on Sunday (except 
from 3 to 9 a.m.) during the same time frame as compared with weekdays.

In addition to the above analyses, we also performed cross validation using the adoles-
cent mood data. Specifically, observations were set to missing according to various missing 
scenarios, then missing observations were imputed by candidate models trained from the 
available data (as well as missing patterns), and finally imputed values were compared with 
the true values based on posterior prediction accuracy as measured by the model likelihood 

Table 4   Parameter estimates and credible intervals for the missing process model: positive affect and nega-
tive affect

Parameter Positive affect Negative affect

Estimate CI Estimate CI

�0 − 1.281 (− 1.453, − 1.103) − 1.285 (− 1.477, − 1.085)
� : Weekday 9 a.m.–3 p.m. − 0.245 (− 0.428, − 0.064) − 0.240 (− 0.424, − 0.053)
� : Weekday 3–6 p.m. − 0.112 (− 0.310, 0.078) − 0.104 (− 0.300, 0.089)
� : Weekday 6–9 p.m. − 0.270 (− 0.465, − 0.078) − 0.264 (− 0.460, − 0.059)
� : Weekday 9 p.m.–3 a.m. − 0.144 (− 0.360, 0.062) − 0.138 (− 0.354, 0.080)
� : Saturday 3–9 a.m. 0.847 (0.290, 1.412) 0.845 (0.277, 1.421)
� : Saturday 9 a.m.–3 p.m. − 0.100 (− 0.361, 0.159) − 0.096 (− 0.359, 0.157)
� : Saturday 3–6 p.m. 0.117 (− 0.171, 0.404) 0.126 (− 0.151, 0.397)
� : Saturday 6–9 p.m. 0.032 (− 0.279, 0.326) 0.041 (− 0.240, 0.324)
� : Saturday 9 p.m.–3 a.m. 0.251 (− 0.057, 0.543) 0.256 (− 0.043, 0.538)
� : Sunday 3–9 a.m. 1.725 (1.043, 2.463) 1.739 (1.005, 2.521)
� : Sunday 9 a.m.–3 p.m. − 0.234 (− 0.495, 0.032) − 0.229 (− 0.481, 0.042)
� : Sunday 3–6 p.m. − 0.341 (− 0.673, − 0.033) − 0.333 (− 0.667, − 0.025)
� : Sunday 6–9 p.m. − 0.465 (− 0.789, − 0.158) − 0.459 (− 0.777, − 0.157)
� : Sunday 9 p.m.–3 a.m. − 0.313 (− 0.647, 0.013) − 0.303 (− 0.640, 0.032)
�2

�
0.767 (0.666, 0.959) 0.717 (0.636, 0.945)
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( elpdCV ). As before, candidate models include (1) a random intercept HV model that 
assumes MAR, (2) a shared parameter location model that only links the outcome mean 
with the missing process, and (3) a shared parameter location scale model that links both 
PA mean and variance with the missing process. In Table 5, � and � are the coefficients in 
the parameter sharing model and denote the effect of missingness on PA mean and vari-
ance, respectively. In the first scenario, where both � and � were set to 0 and missingness 
does not depend on potential outcomes (MAR or MCAR), the first two candidate models 
should achieve similar posterior prediction accuracy (since sharing location or scale does 
not contribute to model fit). The shared location scale model achieves slightly higher pre-
diction accuracy due to the inclusion of random scale effects. In the second scenario, where 
� is set to 0 and missingness only depends on the outcome mean, the shared location model 
should perform better than the random intercept HV model since it corrects for MNAR by 
linking information between the PA mean with the missingness. Again, the shared location 
scale model performs slightly better than the shared location model due to the inclusion 
of random scale effects. In the third scenario, where � is allowed to vary and missingness 
depends on both the PA mean and variance, only the shared location scale model is able to 
capture the correct missing pattern. The further away � moves from 0, the greater benefit 
the shared location scale model achieves over the random intercept HV and shared location 
models.

The details of implementing the three candidate models in Stan and R (using the pack-
age “RStan”) are provided in the supplemental materials. One can incorporate the Stan 
code provided in Supplemental Materials 1.2 and call Stan from R using the sample code 
in 1.3.

7 � Discussion

In this paper, we have developed a general shared parameter framework for normally 
distributed and intensively measured longitudinal outcomes with informative missing-
ness. We exploit a mixed effect location scale model proposed by Hedeker et al. (2008) 
for the primary outcome, and a random intercept logistic model for the intermittent 
missing process. The two models are connected by the random subject location and 
scale effects, which are assumed to capture the common but unmeasurable information 
at the subject level that contributes to both the primary outcome and missing process. 

Table 5   Comparison of cross 
validated prediction accuracy 
(measured by elpdCV ) under 
various missing scenarios

Missing 
scenarios

Random inter-
cept HV model

Shared location model Shared loca-
tion scale 
model

� �

0 0 − 6183.44 − 6183.82 − 5953.89
− 1 0 − 7597.93 − 7507.31 − 7316.31
− 2 0 − 9697.15 − 8879.17 − 8606.67
− 4 0 − 12,398.75 − 10,617.76 − 10,468.86
− 1 1 − 9133.91 − 8950.74 − 8500.87
− 1 2 − 10,396.42 − 10,165.195 − 9595.23
− 1 4 − 12,899.99 − 12,299.93 − 11,621.36
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Due to the computational burden in multi-dimensional numerical integration, we pro-
pose a Bayesian MCMC estimation approach where the joint posterior distribution can 
be approximated by samples drawn from a conventional Metropolis–Hastings–Gibbs 
algorithm. Various improvements such as Hamiltonian Monte Carlo can be used to bal-
ance the trade off between step size and acceptance rate, and ultimately make the chains 
converge faster.

For simplicity, we have assumed a linear relationship between the outcome location/
scale random effects and the missingness random effect with some measurement error. 
However, this relationship could be made more general. Since the scale random effects are 
on the log metric, it could be the case that they are related with the missingness random 
intercept on the original scale, i.e, exp(�2,i) = � ⋅ �i + �2,i . However, this might introduce 
additional difficulties in model estimation. Also, we have assumed a simple random inter-
cept logistic model for the missing process, which might not be a good fit in some situa-
tions. As an extension, one might try a random slope model for the missingness where each 
individual has a bivariate random effect vector 

{

intercepti, slopei
}

=
{

�1,i, �2,i
}

 , represent-
ing the influence of individual i on his/her baseline missing propensity as well as the rate of 
change. In this case, a more sophisticated sharing mechanism would be required to connect 
{

�1,i, �2,i
}

 with 
{

�1,i, �2,i
}

 , which might not be trivial.
The simulation results under the MAR assumption show almost no difference between 

the naive and proposed model. One might prefer the naive method given it is more parsi-
monious and easier to estimate. However, one cannot know whether data are missing at 
random or not in practice when the true underlying mechanism is unknown. As is shown in 
the adolescent mood study example, the naive model underperforms in terms of the out of 
sample prediction accuracy relative to the proposed approach. Also, the estimated � and � 
coefficients both suggest evidence towards non-random missingness. Therefore, the shared 
parameter model would seem to be a safer choice and might be preferred in practice.

In psychological and behavioral sciences, research interests are usually focused on both 
the actual magnitude of the outcome as well as the within subject variability (Steven et al. 
2014). For example, clinician or patient rated average levels of depression, as well as their 
variability, are both critical aspects in characterizing depressed and bipolar patients. Iden-
tifying factors that can potentially influence the mean and within subject variation of the 
psychological outcomes can jointly provide deep insights for clinical intervention. Further, 
as both the outcome mean and variability can be correlated with individuals’ propensity of 
responding, it is essential to share both the location and scale random effects between the 
outcome and missingness models. For binary and Poisson outcomes, where the variability 
is a 1–1 function of the mean, one can replace the bivariate 

{

�1,i, �2,i
}

 vector in the shar-
ing model with the univariate �1,i scaler. An alternative model specification when there is 
evidence for over-dispersion is to model the over-dispersion parameter with a set of scale 
random effects, and adopt a similar sharing mechanism as in the proposed model (Hedeker 
et al. 2009).
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